
10 The Delphi Magazine Issue 69

Apache Shared Modules
by Brian Long

One of the potentially exciting
things about Kylix is being

able to write Apache web server
shared modules. However, it can
be frustrating, so my goal in this
article is to explain what you need
to do to write shared modules and
to get them to work with Apache. I
should warn you that it may be
more complicated and involved
than you might expect...

First things first. Kylix can gener-
ate applications for Apache ver-
sion 1.3.9 and later, running under
Linux. Also, the support for gener-
ating Apache applications is
restricted to the Server Developer
edition and the Enterprise Studio
edition (it’s not in the Desktop
Developer or Open Edition).

I should also mention that the
name Apache Web Server comes
from the fact that it started life as a
patchy web server, based on the
code base for another popular web
server.

One final thing: this article will
not discuss how to write web appli-
cations, since the Windows Delphi
WebBroker concepts all transfer
readily across to Kylix and Linux.

For more information on how
WebBroker applications work, see
past and future editions of Bob
Swart’s Under Construction column.

Apache And CGI Applications
Kylix supports making CGI applica-
tions which Apache can make use
of, in just the same way that Delphi
can generate CGI applications for
Microsoft PWS (Personal Web
Server) or IIS (Internet Information
Server). For completeness, I’ll just
briefly run through what is needed
for CGI applications to operate
correctly.

Getting a Kylix CGI application to
work is quite straightforward,
since the Kylix README file
explains how to modify the Apache
configuration file to support run-
ning CGI applications. It’s a case of
making sure it contains a
ScriptAlias directive that maps a
logical script directory to a physi-
cal directory that will contain CGI
applications. Additionally, you
must add in a Directory directive
that specifies the ExecCGI attribute.
Listing 1 shows both these
directives.

Since your CGI applications will
need to be placed in this directory,
either ensure you have rights to
create files there (use chmod, as
explained later), or be prepared to
copy your CGI binaries into the
directory whilst logged in as root.

You must also make sure that
the library files required by your
CGI program will be found. This is
usually done by adding a SetEnv
directive to the Apache config file
to set the LD_LIBRARY_PATH environ-
ment variable, but can also be
achieved in other ways (see the
Ensuring Libraries Can Be Found
boxout). On a development
machine, this variable should
point to the Kylix bindirectory, but
when deployed, the directive may
not be required depending where
the libraries are placed, as
explained in the boxout.

Note that the Kylix README file
also tells you to use the SetEnv
directive to set the LANG environ-
ment variable, but in fact this step
is unnecessary with the shipping
product. During Kylix develop-
ment, setting this variable ensured
known problems with certain
releases of the Linux glibc library
could be avoided. The shipping
product overcomes these prob-
lems by calling the CheckLocale
routine in the SysUtils unit initial-
isation code, which ensures that
the locale details are set correctly
to avoid these problems, regard-
less of whether the LANG variable
has been set or not.

Figure 1 shows a trivial CGI
application (MyCGIApp) respond-
ing to a PathInfo value of /hello. If
you wish to use dbExpress in a CGI
application, check the dbExpress
Configuration Information boxout.

Apache And Shared Modules
Kylix also supports making
Apache shared modules, which
are similar to ISAPI DLLs for Win-
dows web servers. Shared module
functionality lives in shared object
files (.so files, which are the Linux

➤ Listing 1: An extract from httpd.conf (the Apache configuration file).

➤ Figure 1: A simple CGI application running from Apache
with output in Netscape.

ScriptAlias /scripts/ "/<path>/ cgi-bin/"
<Directory "/<path>/cgi-bin">
AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all

</Directory>

May 2001 The Delphi Magazine 11

equivalent of Windows .dll files).
This is what we will concentrate on
for the rest of the article.

A Windows DLL can be statically
linked to an application or it can be
dynamically loaded at runtime. If it
is statically linked, the linker
inserts references to the DLL in the
application’s file header. Dyna-
mically loaded DLLs are not known
by the linker, and are loaded under
program control with the Load-
Library Windows API. IIS and PWS
can dynamically load an ISAPI DLL
when the name of the DLL is speci-
fied in a URL.

Similarly, code in a Linux SO file
can be statically linked or dynami-
cally loaded. Much functionality is
made available in default modules
(SO files) which are statically
linked, and these are known as
shared libraries or DSO libraries.

Kylix supports generating
Apache functionality in SO files
which are dynamically loaded by
Apache with the dlopen Linux API
through references added to its
configuration file. These libraries
are called shared modules or DSO
files (as opposed to DSO libraries).

The Problem
Unfortunately, it seems Apache
does not have shared module sup-
port enabled by default. Instead,
the available modules that are
installed on your behalf are all stat-
ically linked to Apache. To enable
this support we must recompile
Apache with specific options. This
will apply both on your develop-
ment machine and also on any
machines you deploy to.

Incidentally, if the thought of
recompiling your web server
makes you nervous, then rest
assured that the process is reason-
ably painless if you follow the
directions.

The subject of shared modules
and recompiling Apache to work
with them is discussed in the
Apache documentation which, if
installed, is at http://localhost/
manual/dso.html whilst Apache is
running.

On SuSE Linux, the Apache bina-
ries and documentation are both
installed from the same package.
However, Red Hat Linux has the

Ensuring Libraries Can Be Found
The primary problem in getting Kylix applications to run is ensuring the Linux
dynamic library loader (ld.so) knows where to locate any library files required by
the program.

When developing applications, the Kylix README explains that we can solve
the problem by running the kylixpath script. This script sets up a number of envi-
ronment variables (PATH, LD_LIBRARY_PATH, XPPATH and HHHOME), the key one for
this discussion being LD_LIBRARY_PATH. This variable lists directories that should
be searched by the library loader to locate dynamically loaded library files.

Using the kylixpath script works well whilst developing normal Kylix applica-
tions, but it does not apply so well to developing CGI web applications or Apache
shared modules, nor does it apply to ensuring applications work when they have
been deployed.

Whilst developing any Kylix application, all the key library files are in Kylix’s bin
directory (including the MIDAS library, libmidas.so.1, as used by dbExpress). If you
installed Kylix as a regular user, this means the library files are located somewhere
under your home directory. If you installed as the root user, they will be either
somewhere under the /root directory, or in a more generally accessible file
system branch, such as under /opt or /usr/local.

The problem of telling the loader where to find libraries is typically solved in
one of two ways. You either place the libraries (or symlinks to them) in locations
already known to the loader, or inform the loader where to look for the libraries.

Placing Libraries In Known Locations
The loader always looks in /lib and /usr/lib, so placing the libraries (or symlinks
to them) in either of these directories will work. To create a symlink in /usr/lib
use:

ln -s <path to library>/<library name> /usr/lib/<library name>

Informing The Library Loader Where To Look
If you prefer to instruct the loader where to find the libraries, then either the user
that will run the application sets the LD_LIBRARY_PATH variable to include the
library paths, or the library paths are added to the dynamic loader configuration
file and cached.

You can modify any user’s library search path by editing that user’s ~/.bashrc file
(the .bashrc hidden file in their home directory) or even ~/.bash_profile on Red Hat
systems, if it exists, to contain what is shown below, specifying the library path
where indicated:

if test -n "$LD_LIBRARY_PATH" ; then
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:<library path>"

else
LD_LIBRARY_PATH="<library path>"

export LD_LIBRARY_PATH

This assumes the user runs the Bash shell, which is the default shell used on Linux.
One important point about this option is it relies on the user running the pro-

gram having a home directory and a customisable environment. When Apache
runs an application, it runs as user nobody which does not have a home directory.
In order to set the LD_LIBRARY_PATH variable for a CGI program, you must add a
SetEnv directive into the Apache configuration file, httpd.conf (as described in
the Kylix README file):

SetEnv LD_LIBRARY_PATH <path to libraries>

Unfortunately, the SetEnv directive only applies to CGI applications. It will do
nothing for shared modules.

The alternative to changing the library search path variable is to add the library
directory (or directories) into the /etc/ld.so.conf file (on SuSE Linux you do this indi-
rectly by adding the location to /etc/ld.so.conf.in and then running SuSEconfig).
You then run the ldconfig program which reads /etc/ld.so.conf and creates a
cache file (/etc/ld.so.cache) based on all the libraries it finds in the listed direc-
tories. All these libraries are then automatically available.

12 The Delphi Magazine Issue 69

Apache documentation in a sepa-
rate package to the binaries. To
verify whether the documentation
has been installed on Red Hat, run:

rpm -q apache-manual

The Source
The first thing to do is obtain the
Apache source code. If you happen
to be using Red Hat Linux 7.0, you
can find it on the Source CD in the
SRPMS directory. Alternatively,
you can download it from

http://httpd.apache.org/dist/
apache_1.3.14.tar.gz

During this process of modifying
Apache it is important to be logged
in as root so that you have enough
rights to remove and add software
when appropriate.

Next, you need to uninstall your
current Apache installation
(assuming you have one). To check
whether Apache is installed, run:

rpm -q apache

If you are told that Apache is pres-
ent, locate and backup your
Apache configuration file and then

uninstall Apache with the
commands in Listing 2.

Now you should unpack the
source into some suitable location
(such as /usr/src) as shown in
Listing 3. This makes a directory
called /usr/src/apache_1.3.14
containing the source code tree.

The Plan
The principal goal is to compile
Apache with some options that
affect the layout of the main binary
file, httpd. Rather than this being
one monolithic file, we need to get
most of its code placed in a shared
module called libhttpd.so and an
accompanying executable pro-
gram libhttp.ep. The httpd file will
end up containing nothing much
more than bootstrapping code.

Additionally, Apache must be
compiled with the so module
enabled (this will be statically
linked into Apache). You can
enable as many other standard
modules as you like, but it is vital
that so is enabled.

Finally, Apache must be linked
with the pthread library to over-
come a Linux loader bug where
Apache refuses to run any
Kylix-generated shared objects.
You can verify that Apache has not
been linked with the pthread

library by default by running the
ldd command across the main
httpd binary.

There will be an httpd script in
/etc/init.d (Red Hat or Debian) or
/etc/rc.d/init.d (Red Hat), but the
actual httpd binary file that gets
invoked by it will be located else-
where, perhaps in /usr/local/
apache/bin or /usr/sbin. Running
ldd httpd will produce a list of all
the libraries linked to httpd.
Where the binary is linked to a
library file which is actually a
symlink, the real library file will
also be shown.

Putting The Plan Into Practice
We can accomplish all these things
by passing appropriate options to
the configure script that is at the
root of the source tree. However,
we can also simplify this by making
a config.status script (if one is not
already present) that acts as a
front end for configure. If the file is
not already there, you can make it
like this (the second command
allows the resultant script file to be
executed by everyone).

touch config.status
chmod a+x config.status

config.status should look like List-
ing 4. The SHARED_CORE rule gets the

#!/bin/sh
##
Use this shell script to re-run the APACI configure script for
restoring your configuration. Additional parameters can be supplied.
##
LIBS="/usr/lib/libpthread.so" \
./configure \
"--with-layout=Apache" \
"--enable-module=so" \
"--enable-rule=SHARED_CORE" \
"$@"

➤ Listing 4: The custom script to
build Apache with DSO
support.

locate httpd.conf
cp <path>/httpd.conf ~/httpd.conf.bak
rpm -e apache

➤ Listing 2: Making a backup of
the config file before
removing Apache.

cd /usr/src
tar xvzf apache_1.3.14.tar.gz

➤ Listing 3: Unpacking the
Apache source.

➤ Listing 5: Two Apache
directory layouts from
config.layout.

Classical Apache path layout.
<Layout Apache>

prefix: /usr/local/apache
exec_prefix: $prefix
bindir: $exec_prefix/bin
sbindir: $exec_prefix/bin
libexecdir: $exec_prefix/libexec
mandir: $prefix/man
sysconfdir: $prefix/conf
datadir: $prefix
iconsdir: $datadir/icons
htdocsdir: $datadir/htdocs
cgidir: $datadir/cgi-bin
includedir: $prefix/include
localstatedir: $prefix
runtimedir: $localstatedir/logs
logfiledir: $localstatedir/logs
proxycachedir: $localstatedir/proxy

</Layout>

RedHat 5.x layout
<Layout RedHat>

prefix: /usr
exec_prefix: $prefix
bindir: $prefix/bin
sbindir: $prefix/sbin
libexecdir: $prefix/lib/apache
mandir: $prefix/man
sysconfdir: /etc/httpd/conf
datadir: /home/httpd
iconsdir: $datadir/icons
htdocsdir: $datadir/html
cgidir: $datadir/cgi-bin
includedir: $prefix/include/apache
localstatedir: /var
runtimedir: $localstatedir/run
logfiledir: $localstatedir/log/httpd
proxycachedir: $localstatedir/cache/httpd

</Layout>

14 The Delphi Magazine Issue 69

httpd binary split up as described
above. The with-layout option
specifies which directories will be
used by the various Apache files.
Listing 4 specifies the default
layout, where Apache is installed
in /usr/local/apache and the
configuration file is /usr/local/
apache/conf/httpd.conf.

The typical Red Hat Apache
installation is compiled with the
RedHat layout instead, where
Apache is installed in /usr, with
binaries going in /usr/bin and
/usr/sbin and the configuration file
is /etc/httpd/conf/httpd.conf.

You can view all the available
directory layouts by examining the
config.layout file. Listing 5 shows
the Apache and RedHat layouts
defined. You should be able to see
how the directories get built up
from the individual entries. Any
directories mentioned from this
point on will assume the default
Apache layout.

Note that the original Kylix 1.0
help also describes this compila-
tion process (in Apache DSO appli-
cations, compiling), and shows
a suggested config.status file.

However, the version in the help
erroneously includes two extra
parameters compared to Listing 4.

It passes CFLAGS="-g" and
CFLAGS_SHLIB="-g" which tell the
gcc compiler to include full debug-
ging information in the compiled
binary. This will swell the Apache
binary considerably and may also
disable optimisations and enable
assertions, and so should not be
used in a production system.

To compile and install Apache
from the source requires three
commands:

./config.status
make
make install

The first generates the make files,
the second builds Apache and the
third installs it according to the
requested directory layout.

Running ldd httpd (where httpd
is likely to be in /usr/local/
apache/bin) will now show that
Apache is linked with the pthread
library. Listing 6 shows the com-
mand being executed, after chang-
ing to the right directory, along
with its output. Note that Linux
allows you to enter multiple
commands at the same time if you
separate them with semicolons.

With the default Apache layout,
shared modules are found in
/usr/local/apache/libexec (/usr/
lib/apache in the RedHat layout).
Since your shared modules will
also be placed there, you must
either copy them there whilst
logged in as root or give yourself
write access to the directory, for
example with:

chmod o+w
/usr/local/apache/libexec

Having built a suitable version of
Apache, you should make sure it is
running. Different distros differ in
how you ensure it runs by default
at startup, but you can always start
it manually with the apachectl
script in /usr/local/apache/bin.
Run this command to start
Apache:

apachectl start

Alternatively, you can run the boot
script (described earlier for Red
Hat and Debian) with a start
parameter, using one of the
commands in Listing 7.

If Apache fails to start, look in
the error log file /usr/local/
apache/logs/error_log to try and
find out why.

With Apache (hopefully) suc-
cessfully running we can move
onto the business of actually creat-
ing shared modules. There are
three steps to having a success-
fully operating Apache shared
module: first create the shared
module, second load the shared
module, and finally set the module
handler.

Creating The Shared Module
Choose File | New..., then Web
Server Application, then Apache
Shared Module (DSO). This makes a
project much the same as a CGI
application, but with a different
project source file (see Listing 8).
Firstly, a shared module is a
library, not an application. Sec-
ondly, there is a symbol exported
by the project file. This basically
means that building the functional-
ity for a shared module is much the
same as for a CGI application. It’s
just the project file that differs.

➤ Listing 6: ldd verifying the
pthread library has been
linked.

➤ Listing 7: Starting Apache with a boot script.

library Foo;
uses
WebBroker, ApacheApp,
FooU in 'FooU.pas' {WebModule1: TWebModule};

{$R *.res}
exports
apache_module name 'Foo_module';

begin
Application.Initialize;
Application.CreateForm(TWebModule1, WebModule1);
Application.Run;

end.

➤ Listing 8: The shared module project file.

[blong@Cube blong]$ cd /usr/local/apache/bin; ldd http
libpthread.so.0 => /lib/libpthread.so.0 (0x40020000)
libm.so.6 => /lib/libm.so.6 (0x40036000)
libcrypt.so.1 => /lib/libcrypt.so.1 (0x40055000)
libdl.so.2 => /lib/libdl.so.2 (0x40083000)
libc.so.6 => /lib/libc.so.6 (0x40087000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

#for RedHat:
/etc/rc.d/init.d/httpd start
#for Debian or Red Hat (Red Hat has a symlink):
/etc/init.d/httpd start
#for SuSE:
/sbin/init.d/apache start

May 2001 The Delphi Magazine 15

The sample project file in Listing
9 has been saved as Foo.dpr. The
exported symbol, apache_module, is
actually the name of a record con-
taining information that Apache
needs. Kylix therefore now allows
data items to be exported as well as
just procedure and functions. It is
typical for a shared module to
rename this symbol during the
export process and the expected
pattern is <project_name>_module
(although any pattern is valid). A
project called Foo therefore typi-
cally exports the symbol
Foo_module.

There are four key strings to
understand when setting up a
shared module.

1. The module record name,
Foo_module. This exported symbol
specifies how the module descrip-
tion record will be known to
Apache. Apache finds all the infor-
mation about your shared module
from this record. This is case sensi-
tive, so make sure you get the right
case when referring to it.

2. The library name, libFoo.so.
This is the name of the resultant
binary file. Shared objects default
to having a .so suffix and a lib
prefix (these can be changed in the
project options dialog, or with
compiler directives).

3. The module name, libFoo. This
defaults to the base name of the
resultant binary library file. This
can be changed by assigning a
value to the ModuleName variable
before the call to Application.Ini-
tialize (either in the project file,
or in a unit initialisation section).
This string is placed in the name
field of the module record.

4. The content type, libfoo-han-
dler. This defaults to the module
name in lower case with a -handler
suffix. This can be changed by
assigning a string to the Content-
Type variable before the call to
Application.Initialize. This
string is stored as the content_type
field in the handlers record field of
the module record. The Apache
source specifies this value should
be lower case, so you should
respect this rule.

This library should be compiled
to the same directory where other
shared modules reside which, in

dbExpress Configuration Information
A dbExpress application needs to connect to a supported database. dbExpress appli-
cations typically use MIDAS and so the MIDAS library, libmidas.so.1, must be deployed
with the application and made available. The details about the database connection
and the driver needed to make it must also be available to the dbExpress application
in order for it to work correctly. This is perhaps most cleanly done by compiling them
into the application, although this means the location of the database (and all the
other connection/driver details) cannot change. If this is acceptable, ensure the
TSQLConnection component’s Params property has all the required parameters set
up at design-time, and that its LoadParamsOnConnect property is False.

If you prefer to use configuration files, you must understand how dbExpress
locates them. Inside the SqlExpr unit (which implements TSQLConnection) a pri-
vate GetRegistryFile routine exists. If LoadParamsOnConnect is set to True, this
routine is used to locate the configuration files. It first looks in the logged in user’s
home directory to see if there is a hidden .borland directory which, if a Kylix devel-
oper is logged in, there will be. Inside ~/.borland the code uses the dbxdrivers and
dbxconnections files.

The idea is that individual developers can use Kylix on the same system and keep
their own dbExpress settings separate from each other. During development, you can
make sure your CGI application uses your own dbExpress settings by adding another
SetEnvdirective to Apache’s configuration file to tell it which home directory to look
in for the .borland directory (see below). However, this should only be done during
development. Giving the nobody user a valid HOME variable is never advisable in a
production system.

SetEnv HOME <home directory>

When you deploy your CGI application, you cannot assume that any particular user
will have appropriate dbExpress configuration files. So, instead of user-specific
dbExpress configuration files, you should use the global configuration files. Kylix
installs these in /usr/local/etc as dbxdrivers.conf and dbxconnections.conf and you
should deploy your settings to the same files (taking care in case the files already
exist).

When the dbExpressGetRegistryFile routine looks to see if$HOME/.borland/
exists and finds that it doesn’t on a production system, it will fall back to using the
global configuration files which should always be made available to it. However, it
should be noted that using the global configuration files always makes a failed call to
FileExists followed by a successful call to FileExists for every request.

You must weigh up the pros and cons of compiling the dbExpress parameters into
the shared module, meaning you cannot move the database, versus using the global
configuration files, which means redundant FileExists calls (which themselves call
the Libc euidaccess API) being made.

the default Apache directory
layout, is the libexec directory
under Apache’s installation direc-
tory. Remember to make sure you
have rights to create files in this
directory, as explained earlier.

If you get a warning from Kylix
during compilation/linking saying
it cannot find libhttpd.so, this is
because the library cannot be
found on any of the normal library
search paths (it’s in the shared
modules directory, /usr/local/
apache/libexec). To allow Kylix to
see the library, follow one of the
suggestions in the Ensuring
Libraries Can Be Found boxout.

The shared module should now
compile without any warnings.
Our next task is to ensure that it

will run successfully from Apache.
We have the same problems as we
encountered with CGI applica-
tions, in that certain required
libraries (notably the MIDAS
library, if you are using dbExpress)
will not be found by the library
loader. Again, you can resolve this
with the steps described in the
Ensuring Libraries Can Be Found
boxout.

When your application is
deployed, make sure that the
global dbExpress configuration
files are used, or alternatively
compile all of the driver and
connection parameters into the
application (see the dbExpress
Configuration Information boxout
for details of how to do this).

16 The Delphi Magazine Issue 69

Load The Shared Module
In httpd.conf, there is a (possibly
empty) section set up for loading
shared modules. Each shared
module gets a LoadModule entry in
the list set up like this:

LoadModule module_record_name
library_name

If the library is not in the Apache
root directory (which of course it
isn’t) you must include relative
path details. In the default
directory layout, this will mean
specifying something like:

LoadModule Foo_module
libexec/libFoo.so

Note again that the module record
name is case-sensitive, so this
version would not work:

LoadModule foo_module
libexec/libFoo.so

Set The Module Handler
In order for your shared module to
handle various requests you set up
a location attribute (typically
immediately below the LoadModule
directive) and specify a handler for
it in terms of a content type. Listing
9 shows the generic layout of the
Location directive, along with an
example that specifies all requests
that start with the path /kylix are to
be handled by your module.

This tells Apache that all
requests with a /kylix path should
be handled by your module

(remember that the content type
should be lower case). Assuming
you have a default action in your
shared module, you can invoke it
with the URL http://localhost/
kylix. Figure 2 shows this situation
where the shared module is
responding to a PathInfo of /cust.

Common Errors
Whilst trying to get shared mod-
ules to work, you may come across
a number of obstacles, many of
which are reported in the Apache
error log file. Here are some expla-
nations of the more common prob-
lems, where each resolution has
been implemented throughout the
preceding text:
➢ The CGI app gives the Internal

Server Error message in the
browser. This indicates that the
required SetEnv CGI directives
are not in the Apache configura-
tion file, or Apache has not been
restarted since adding them.

➢ During compilation, Kylix gives
a warning File not found:
‘libhttpd.so’. This indicates the
(required) file is not on the li-
brary search path. If the file
does exist somewhere in the file
system, set up a symlink in a
standard library directory,
such as /usr/lib. If the file does
not exist, you must recompile
Apache with the SHARED_CORE
rule to create it.

➢ The error log says: child pid
<pid> exit signal Segmentation
fault (11). This can be caused by
the DSO not being able to locate

the MIDAS library,
libmidas.so.1. Unfortu-
nately, the dbExpress error
checking for this problem is
non-existent and ultimately
the code jumps to a nil
function pointer as a result.
Since Apache runs as user
nobody, you must make sure
that this library is accessi-
ble for that user. Making a
symlink to it from a stan-
dard library directory, such
as /usr/lib, can remedy the
problem.

➢ The error log says: loaded DSO
<module name> uses plain
Apache 1.3 API, this module
might crash under EAPI! (please
recompile it with -DEAPI). This is
an indication that Apache is not
compiled with DSO support, or
that the so module is not en-
abled. Follow the instructions
to rebuild Apache as above,
making sure you have definitely
removed any previous version
of Apache that may have been
installed.

➢ The error log says: shared ob-
ject not open. This is usually be-
cause DSO support has not
been enabled and the module
fails to find libhttpd.so. You
must recompile Apache with
DSO support enabled as
directed above.

Finally
Bob Swart will come back to the
subject of Kylix CGI applications
and shared modules for Apache in
his Under Construction column next
month. Until then, I hope the infor-
mation presented here helps get
you started playing with Apache
shared modules under Linux.

Acknowledgements
Thanks are due to Shane Hausle
from Borland QA for much needed
help getting through a couple of
Apache problems, and sugges-
tions for improving the clarity and
accuracy of this article.

Brian Long is a freelance trainer
and problem solver specialising in
Delphi, Kylix and C++Builder
work. Visit www.blong.com or
email him on brian@blong1.com

Copyright © 2001 Brian Long

➤ Listing 9: Setting the module
handler.

➤ Figure 2: A shared
module displaying output
in the KDE File Manager.

The generic layout of the
Location directive
<Location /location>
SetHandler content_type

</Location>
An actual example of the
Location directive
<Location /kylix>
SetHandler libfoo-handler

</Location>

	Apache And CGI Applications
	Apache And Shared Modules
	The Problem
	Ensuring Libraries Can Be Found
	Placing Libraries In Known Locations
	Informing The Library Loader Where To Look

	The Source
	The Plan
	Putting The Plan Into Practice
	Creating The Shared Module
	dbExpress Configuration Information
	Load The Shared Module
	Set The Module Handler
	Common Errors
	Finally
	Acknowledgements

